5,998 research outputs found

    Structural Properties of the Disordered Spherical and other Mean Field Spin Models

    Full text link
    We extend the approach of Aizenman, Sims and Starr for the SK-type models to their spherical versions. Such an extension has already been performed for diluted spin glasses. The factorization property of the optimal structures found by Guerra for the SK model, which holds for diluted models as well, is verified also in the case of spherical systems, with the due modifications. Hence we show that there are some common structural features in various mean field spin models. These similarities seem to be quite paradigmatic, and we summarize the various techniques typically used to prove the structural analogies and to tackle the computation of the free energy per spin in the thermodynamic limit.Comment: 24 page

    DNA methylation profiling of the human major histocompatibility complex: A pilot study for the Human Epigenome Project

    Get PDF
    The Human Epigenome Project aims to identify, catalogue, and interpret genome-wide DNA methylation phenomena. Occurring naturally on cytosine bases at cytosine-guanine dinucleotides, DNA methylation is intimately involved in diverse biological processes and the aetiology of many diseases. Differentially methylated cytosines give rise to distinct profiles, thought to be specific for gene activity, tissue type, and disease state. The identification of such methylation variable positions will significantly improve our understanding of genome biology and our ability to diagnose disease. Here, we report the results of the pilot study for the Human Epigenome Project entailing the methylation analysis of the human major histocompatibility complex. This study involved the development of an integrated pipeline for high-throughput methylation analysis using bisulphite DNA sequencing, discovery of methylation variable positions, epigenotyping by matrix-assisted laser desorption/ionisation mass spectrometry, and development of an integrated public database available at http://www.epigenome.org. Our analysis of DNA methylation levels within the major histocompatibility complex, including regulatory exonic and intronic regions associated with 90 genes in multiple tissues and individuals, reveals a bimodal distribution of methylation profiles (i.e., the vast majority of the analysed regions were either hypo- or hypermethylated), tissue specificity, inter-individual variation, and correlation with independent gene expression data

    SO(5) superconductor in a Zeeman magnetic field: Phase diagram and thermodynamic properties

    Full text link
    In this paper we present calculations of the SO(5) quantum rotor theory of high-Tc_{c} superconductivity in Zeeman magnetic field. We use the spherical approach for five-component quantum rotors in three-dimensional lattice to obtain formulas for critical lines, free energy, entropy and specific heat and present temperature dependences of these quantities for different values of magnetic field. Our results are in qualitative agreement with relevant experiments on high-Tc_{c} cuprates.Comment: 4 pages, 2 figures, to appear in Phys. Rev. B, see http://prb.aps.or

    Sharp Bounds in Stochastic Network Calculus

    Full text link
    The practicality of the stochastic network calculus (SNC) is often questioned on grounds of potential looseness of its performance bounds. In this paper it is uncovered that for bursty arrival processes (specifically Markov-Modulated On-Off (MMOO)), whose amenability to \textit{per-flow} analysis is typically proclaimed as a highlight of SNC, the bounds can unfortunately indeed be very loose (e.g., by several orders of magnitude off). In response to this uncovered weakness of SNC, the (Standard) per-flow bounds are herein improved by deriving a general sample-path bound, using martingale based techniques, which accommodates FIFO, SP, EDF, and GPS scheduling. The obtained (Martingale) bounds gain an exponential decay factor of O(eαn){\mathcal{O}}(e^{-\alpha n}) in the number of flows nn. Moreover, numerical comparisons against simulations show that the Martingale bounds are remarkably accurate for FIFO, SP, and EDF scheduling; for GPS scheduling, although the Martingale bounds substantially improve the Standard bounds, they are numerically loose, demanding for improvements in the core SNC analysis of GPS

    Quantum description of spherical spins

    Get PDF
    The spherical model for spins describes ferromagnetic phase transitions well, but it fails at low temperatures. A quantum version of the spherical model is proposed. It does not induce qualitative changes near the phase transition. However, it produces a physical low temperature behavior. The entropy is non-negative. Model parameters can be adapted to the description of real quantum spins. Several applications are discussed. Zero-temperature quantum phase transitions are analyzed for a ferromagnet and a spin glass in a transversal field. Their crossover exponents are presented.Comment: 4 pages postscript. Revised version, to appear in Phys. Rev. Let

    N-dimensional electron in a spherical potential: the large-N limit

    Full text link
    We show that the energy levels predicted by a 1/N-expansion method for an N-dimensional Hydrogen atom in a spherical potential are always lower than the exact energy levels but monotonically converge towards their exact eigenstates for higher ordered corrections. The technique allows a systematic approach for quantum many body problems in a confined potential and explains the remarkable agreement of such approximate theories when compared to the exact numerical spectrum.Comment: 8 pages, 1 figur

    Thermo-oxidative Stability and Flammability of Three-dimensional Polymers Based on Olygocarbonate-methacrylates

    Get PDF
    By the irreversible condensation reaction of the mono-methacrylic ester of ethylene glycol and chlorocarbonic esters of 2,2-dimethylpropandiol- 1,3 and 2,2-dimethylene chloride-propandiol-1,3, two olygocarbonate methacrylate (OCM-I and -II, respectively) containing unsaturated ends were synthesised. The polymerization of OCM-I and OCM-II in the presence of cumene hydro.peroxide and an accelerator gave two cross-liinked polymers Ln a yield of 70-750/o. The thermal and thermo-oxidative decompositions of the prepared polymers were studied by the thermogravimetric method and by characterization of the volatile pyrolysis products and the nonvolatile polymer residue. The influence of the polymer structure on the mechanism of the decomposition reactions in vacuo as well as iin the presence of oxygen was discussed. The temperature dependence of thermostabiLity was compared with some polymer flammability parameters

    Polarised target for Drell-Yan experiment in COMPASS at CERN, part I

    Full text link
    In the polarised Drell-Yan experiment at the COMPASS facility in CERN pion beam with momentum of 190 GeV/c and intensity about 10810^8 pions/s interacted with transversely polarised NH3_3 target. Muon pairs produced in Drel-Yan process were detected. The measurement was done in 2015 as the 1st ever polarised Drell-Yan fixed target experiment. The hydrogen nuclei in the solid-state NH3_3 were polarised by dynamic nuclear polarisation in 2.5 T field of large-acceptance superconducting magnet. Large helium dilution cryostat was used to cool the target down below 100 mK. Polarisation of hydrogen nuclei reached during the data taking was about 80 %. Two oppositely polarised target cells, each 55 cm long and 4 cm in diameter were used. Overview of COMPASS facility and the polarised target with emphasis on the dilution cryostat and magnet is given. Results of the polarisation measurement in the Drell-Yan run and overviews of the target material, cell and dynamic nuclear polarisation system are given in the part II.Comment: 4 pages, 2 figures, Proceedings of the 22nd International Spin Symposium, Urbana-Champaign, Illinois, USA, 25-30 September 201

    A generalized spherical version of the Blume-Emery-Griffits model with ferromagnetic and antiferromagnetic interactions

    Full text link
    We have investigated analitycally the phase diagram of a generalized spherical version of the Blume-Emery-Griffiths model that includes ferromagnetic or antiferromagnetic spin interactions as well as quadrupole interactions in zero and nonzero magnetic field. We show that in three dimensions and zero magnetic field a regular paramagnetic-ferromagnetic (PM-FM) or a paramagnetic-antiferromagnetic (PM-AFM) phase transition occurs whenever the magnetic spin interactions dominate over the quadrupole interactions. However, when spin and quadrupole interactions are important, there appears a reentrant FM-PM or AFM-PM phase transition at low temperatures, in addition to the regular PM-FM or PM-AFM phase transitions. On the other hand, in a nonzero homogeneous external magnetic field HH, we find no evidence of a transition to the state with spontaneous magnetization for FM interactions in three dimensions. Nonethelesss, for AFM interactions we do get a scenario similar to that described above for zero external magnetic field, except that the critical temperatures are now functions of HH. We also find two critical field values, Hc1H_{c1}, at which the reentrance phenomenon dissapears and Hc2H_{c2} (Hc10.5Hc2H_{c1}\approx 0.5H_{c2}), above which the PM-AFM transition temperature vanishes.Comment: 21 pages, 6 figs. Title changed, abstract and introduction as well as section IV were rewritten relaxing the emphasis on spin S=1 and Figs. 5 an 6 were improved in presentation. However, all the results remain valid. Accepted for publication in Phys. Rev.

    On the mean-field spherical model

    Full text link
    Exact solutions are obtained for the mean-field spherical model, with or without an external magnetic field, for any finite or infinite number N of degrees of freedom, both in the microcanonical and in the canonical ensemble. The canonical result allows for an exact discussion of the loci of the Fisher zeros of the canonical partition function. The microcanonical entropy is found to be nonanalytic for arbitrary finite N. The mean-field spherical model of finite size N is shown to be equivalent to a mixed isovector/isotensor sigma-model on a lattice of two sites. Partial equivalence of statistical ensembles is observed for the mean-field spherical model in the thermodynamic limit. A discussion of the topology of certain state space submanifolds yields insights into the relation of these topological quantities to the thermodynamic behavior of the system in the presence of ensemble nonequivalence.Comment: 21 pages, 5 figure
    corecore